

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S3 (6691/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/ Aboutus/ contact-us/

Summer 2010 Publications Code UA024774 All the material in this publication is copyright © Edexcel Ltd 2010

Hypothesis Tests (Final M1A1)

For an incorrect comparison (e.g. probability with z value) even with a correct statement and/ or comment award MOA0

For a correct or no comparison with <u>more than one statement one of which is false</u>
Award M0A0 (This is compatible with the principle above of contradictory statements being penalised)

Apply these rules to all questions

June 2010 Statistics S3 6691 Mark Scheme

Question Number	Scheme	Marks						
Q1	H_0 : $\mu = 80$, $H_{1:}\mu > 80$	B1,B1						
	$z = \frac{83 - 80}{15} = 2$	M1A1						
	$\overline{\sqrt{100}}$							
	2 > 1.6449 (accept 1.645 or better)	B1						
	Reject H ₀ or significant result or in the critical region Managing director's claim is supported.	M1 A1 7						
	1 st B1 for H ₀ . They must use μ not x , p , λ or \overline{x} etc 2 nd B1 for H ₁ (must be > 80). Same rules about μ .							
	1 st M1 for attempt at standardising using 83, 80 and $\frac{15}{\sqrt{100}}$. Can accept \pm .							
	May be implied by $z = \pm 2$ 1 st A1 for + 2 only							
	3^{rd} B1 for ± 1.6449 seen (or probability of 0.0228 or better) 2^{nd} M1 for a correct statement about "significance" or rejecting H_0 (or H_1) based on and their 1.6449 (provided it is a recognizable critical value from normal tab probability (< 0.5) and significance level of 0.05. Condone their probability > 0.5 compared with 0.95 for the 2^{nd} M1 2^{nd} A1 for a correct contextualised comment. Must mention "director" and "claim" and "use of Internet". No follow through.	oles) <u>or</u> their						
2 nd M1A1	and "use of Internet". No follow through. If no comparison or statement is made but a correct contextualised comment is given to implied. If a comparison is made it must be compatible with statement otherwise M0 e.g. comparing 0.0228 with 1.6449 is M0 or comparing probability 0.9772 with 0.05 comparing -2 with - 1.6449 is OK provided a correct statement accompanies it condone -2 >-1.6449 provided their statement correctly rejects H ₀ .							
Critical Region	They may find a critical region for \overline{X} : $\overline{X} > 80 + \frac{15}{\sqrt{100}} \times 1.6449 = \text{awrt } 82.5$ 1 st M1 for $80 + \frac{15}{\sqrt{100}} \times (z \text{ value})$ 3 rd B1 for 1.645 or better 1 st A1 for awrt 82.5 The rest of the marks are as per the scheme.							

Question Number	Scheme								
Q2	$[P \sim N(90.9) \text{ and } J \sim N(91.12)]$								
(a)	$(J-P) \sim N(1,21)$	M1, A1							
	P(J < P) = P(J - P < 0)								
	$(J-P) \sim N(1,21)$ $P(J < P) = P(J-P < 0)$ $= P(J < P)$								
	$=P\left(Z<\frac{0-1}{\sqrt{21}}\right)$	dM1							
	(121)								
	= P(Z < -0.2182)								
	=1-0.5871=0.4129 awrt (0.413 ~ 0.414)	A1							
	calculator (0.4136)	(4)							
(b)	$X = (J_1 + J_2 + \dots + J_{60}) - (P_1 + P_2 + \dots + P_{60})$	M1							
(5)	1 2 00 1 2 00								
	$E(X) = 60 \times 91 - 60 \times 90 = 60$ [stated as $E(X) = 60$ or $X \sim N(60,)$]	B1							
	$Var(X) = 60 \times 9 + 60 \times 12 = 1260$	A1							
	$P(X > 120) = P\left(Z > \frac{120 - 60}{\sqrt{1260}}\right)$	M1							
	$\sqrt{1260}$	IVII							
	= P(Z > 1.69030)								
	=1-0.9545=0.0455 awrt (0.0455)	A1							
		(5)							
		9							
(a)	1 st M1 for attempting $J - P$ and $E(J - P)$ or $P - J$ and $E(P - J)$ 1 st A1 for variance of 21 (Accept 9 + 12). Ignore any slip in μ here. 2 nd dM1 for attempting the correct probability and standardising with their mean and This mark is dependent on previous M so if $J - P$ (or $P - J$) is not being used If their method is not crystal clear then they must be attempting $P(Z < -ve \ var P(Z > +ve \ value)$ i.e. their probability after standardisation should lead to a so e.g. $P(J - P < 0)$ leading to 0.5871 is M0A0 unless the M1 is clearly earn for awrt 0.413 or 0.414	d score M0 alue) or prob. < 0.5							
	The first 3 marks may be implied by a correct answer								
(b)	1 st M1 for a clear attempt to identify a correct form for <i>X</i> . This may be implied by c variance of 1260	orrect							
	for $E(X) = 60$. Can be awarded even if they are using $X = 60J - 60P$. Allow	P - J and -60							
	1 st A1 for a correct variance. If 1260 is given the M1 is scored by implication.								
	2 nd M1 for attempting a correct probability and standardising with 120 and their 60 a								
	If the answer is incorrect a full <u>expression</u> must be seen following through the								
	for M1 e.g. $P\left(Z > \frac{120 - \text{ their } 60}{\sqrt{\text{their variance}}}\right)$. If using -60, should get $P\left(Z < \frac{-120 - \sqrt{\text{their } v}}{\sqrt{\text{their } v}}\right)$	$\frac{-60}{\text{variance}}$							
Use of means	Attempt to use $\overline{J} - \overline{P}$ for 1 st M1, E($\overline{J} - \overline{P}$) = 1 for B1 and Var($\overline{J} - \overline{P}$) = 0.3 Then 2 nd M1 for standardisation with 2, and their 1 and 0.35	5 for A1							

Ques Numl		Scheme	Marks
Q3	(a)	$E \sim N(0, 0.5^2)$ or $X \sim N(w, 0.5^2)$	
		$P(E < 0.6)$ = $P(Z < \frac{0.6}{0.5})$ or $P(X - w < 0.6) = P(Z < \frac{0.6}{0.5})$ = $P(Z < 1.2)$	M1
		$= 2 \times 0.8849 - 1 = 0.7698$ awrt 0.770	A1 (2)
	(b)	$\overline{E} \sim N\left(0, \frac{1}{64}\right)$ or $\overline{X} \sim N\left(w, \frac{0.5^2}{16}\right)$	(2) M1
		$\overline{E} \sim N\left(0, \frac{1}{64}\right) \qquad \text{or} \qquad \overline{X} \sim N\left(w, \frac{0.5^2}{16}\right)$ $P(\overline{E} < 0.3) = P\left(Z < \frac{0.3}{\frac{1}{8}}\right) \qquad \text{or} \qquad P(\overline{X} - w < 0.3) = P\left(Z < \frac{0.3}{\frac{1}{8}}\right)$	M1, A1
		$= P(Z < 2.4)$ $= 2 \times 0.9918 - 1 = 0.9836$ awrt 0.984	A1 (4)
	(c)	$35.6 \pm 2.3263 \times \frac{1}{8}$	M1 B1
		(35.3, 35.9)	A1,A1
			(4) 10
	(a)	1 st M1 for identifying a correct probability (they must have the 0.6) and attempting standardise. Need . This mark can be given for 0.8849 - 0.1151 seen as fi for awrt 0.770. NB an answer of 0.3849 or 0.8849 scores M0A0 (since it in M1 may be implied by a correct answer	nal answer.
	(b)	1 st M1 for a correct attempt to define \overline{E} or \overline{X} but must attempt $\frac{\sigma^2}{n}$. Condone label	ling as E or X
		This mark may be implied by standardisation in the next line. 2^{nd} M1 for identifying a correct probability statement using \overline{E} or \overline{X} . Must have 0.3 1^{st} A1 for correct standardisation as printed or better 2^{nd} A1 for awrt 0.984 The M marks may be implied by a correct answer.	and
	m of , not	1^{st} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct attempt at suitable sum distribution with correct variance (= 16×10^{-10} M1 for correct variance (= 16×10	$\frac{1}{4}$)
	eans	2^{nd} M1 for identifying a correct probability. Must have 4.8 and $ $ 1 st A1 for correct standardisation i.e. need to see $\frac{4.8}{\sqrt{4}}$ or better	
		VΤ	
	(c)	M1 for $35.6 \pm z \times \frac{0.5}{\sqrt{16}}$	
		B1 for 2.3263 or better. Use of 2.33 will lose this mark but can still score ¾ 1 st A1 for awrt 35.3 for awrt 35.9	

Quest Numb					Sch	neme						Marks
Q4	(a)		Distance rank	1	2	3	4	5	6	7		
			Depth rank	1	2	4	3	6	7	5		M1
			d	0	0	1	1	1	1	2		M1
			d^2	0	0	1	1	1	1	4		M1
	(b)	$H_0: \rho =$ Critical $r_s < 0.89$ The resor insurant or theresor	$= 1 - \frac{6 \times 8}{7 \times 48}$ $= \frac{6}{7} = 0.857$ $= 0, H_1: \rho > 0$ value at 1% 929 so not signature exists the searcher's classification evidence is insufficient evidence in the searcher's continuous expositive) continuous expositive) continuous expositive) continuous expositive) continuous expositive expositive) continuous expositive expositive) continuous expositive e	level is ignificant is no lence for ient evid	at evidend of correct research ence tha	(at 1% l ner's cla t water g	level). im ets deep				k.	M1A1 M1 A1 (6) B1 B1 M1 A1ft (4)
	(a) (b)	1st M1 for an attempt to rank the depths against the distances 2^{nd} M1 for attempting d for their ranks. Must be using ranks. 3^{rd} M1 for attempting $\sum d^2$ (must be using ranks) 1^{st} A1 for sum of 8 (or 104 for reverse ranking) 4^{th} M1 for use of the correct formula with their $\sum d^2$. If answer is not correct an expression is required. 2^{nd} A1 for awrt (±) 0.857. Sign should correspond to ranking (so use of 104 should get -0.857) 1^{st} B1 for both hypotheses in terms of ρ , H ₁ must be one tail and compatible with their ranking 2^{nd} B1 for cv of 0.8929 (accept ±) for a correct statement relating their r_s with their cv but cv must be such that cv <1 for a correct contextualised comment. Must mention "researcher" and "claim" or										
			"distance Follow to Use of "a	hrough t	heir r_s a	nd their			cv <1)			

Question Number		Scheme												
Q5	Income	Finances	Finances Worse Same Better											
	Under £	15 000	10.54	10.54	12.92	34								
		and above	20.46	20.46	25.08	66		M1						
			31	31	38	100		A1						
	 H₀: State of finances and income are independent (not associated) H₁: State of finances and income are not independent (associated) 													
	O_i	E_i	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	$\frac{{O_i}^2}{E_i}$										
	14	10.54	1.1358	18.59										
	11	10.54	0.0200	11.48				M1						
	9	12.92	1.1893	6.269				2.22						
	17	20.46	0.5851	14.12				A1						
	20	20.46	0.0103	19.55										
	29	25.08	0.6126	33.53										
	$\sum \frac{(O_i)}{v = (3 - \text{cv is } 5.9)}$	vrt 3.55)	A1 B1 B1											
	3.553 <	5.991 so insu	fficient evider	ice to reject H	I ₀ <u>or</u> not signi	ficant		M1						
		$3.553 < 5.991$ so insufficient evidence to reject H_0 or not significant. There is no evidence of association between state of finances and income.												
	1^{st} M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{C_{\text{row d.Total}}}$. May be implied by correct E_i													
	1 st M1	E_{i}												
	1 st A1	for all expec		nd Total es correct										
	B1	1 1												
	$2^{nd} M1$				r 4 th column) c		ressions w	with their E_i						
	2 nd A1				a correct answ	=		ı						
	3 rd M1													
	3 rd M1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct comment in context - must mention "state" or "finances" and "for a correct comment in context - must mention "state" or "finances" and "for a correct comment in context - must mention "state" or "finances" and "for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct comment in context - must mention "state" or "finances" and "for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their test statistic and their cv. Must be χ² rd 4 th A1 for a correct statement linking their correct statement linking th													

Question Number	Scheme										Marks
Q6	Distance from centre			1	1-2	2-4	4-6	6-9	9-12		
	of site (m) $b-a$ No of artefacts		1		1	2	2	3	3		M1
			2:		15	44	37	52	58		M1
			_1		1	1	1	1	1		A1
	`	$P(a \le X < b)$		2	12	6	- 6	4	4		
	$228 \times P(a \le a)$	X < b	1	9	19	38	38	57	57		A1
	Class	O_i	E_{i}	_($\frac{O_i - E_i)^2}{E_i}$	$\frac{O}{H}$					
	0-1	22	19	<u>9</u> 19	= 0.4736	25.5	57				
	1-2	15	19	16 19	= 0.8421	11.8	34				M1
	2-4	44	38	$\frac{36}{38}$	= 0.9473	50.9	94				
	4-6	37	38	$\frac{1}{38}$	= 0.0263	36.0)2				
	6-9	52	57	<u>25</u> 57	= 0.4385		3				A1
	9-12	58	57	<u>1</u> 57	= 0.0175	59.0	01				
	H ₀ : continuous uniform distribution is a good fit H ₁ : continuous uniform distribution is not a good fit										B1
		JN 1 A 1									
	$\sum \frac{(O_i - E_i)}{E_i}$	dM1A1									
	$\nu = 6 - 1 = 5$		B1								
	$\chi_5^2(0.05) = 1$	05))	B1ft								
	2.75<11.070	M1									
	Continuous u	A1									
		12									
	1 st M1 for c	alculat	ion of	at le	ast 3 widths	and atte	empting p	proportions	probs. or	for 1:2	
		correct									
			_	expected frequencies $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 3 correct expressions or values.							
	2 nd M1 for a	ttempti	$\frac{C}{C}$	$\frac{D-E}{E}$	$\frac{1}{2}$ or $\frac{O^2}{E}$,	at least 3	correct e	expressions	or values	•	
				L	L						
	Follow through their E_i provided they are not all = 38 3^{rd} A1 for a correct set of calcs - 3^{rd} or 4^{th} column. (2 dp or better and allow e.g. 0.94 3^{rd} dM1 dependent on 2^{nd} M1 for attempting a correct sum or calculation (must see a)
	and										
	The first three Ms and As can be implied by a test statistic of awrt 2.7 4 th M1 for a correct statement based on their test statistic (> 1) and their cv (> 3.8)										
	Contradictory statements score M0 e.g. "significant" do not reject H_0 .										
	5 th A1 for a	a correc	et com	men	t suggesting	that cor	tinuous u	uniform mo	del is suit	able. 1	No ft

Question Number	Scheme	Mark	(S
Q7 (a)		M1	_
, ,	Use random numbers to select	M1	
	Simple random sample of 120 full time staff and 80 part time staff	A1	(3)
(b)	Enables estimation of statistics / errors for each strata or "reduce variability" or "more representative" or "reflects population structure" NOT "more accurate"	B1	(1)
(c)		B1	
	s.e. = $\sqrt{\frac{21}{80} + \frac{19}{80}}$, $z = \frac{52 - 50}{\sqrt{\frac{21}{80} + \frac{19}{80}}} = (2\sqrt{2})$	M1,M1	
	= 2.828 (awrt 2.83)	A1	
	Two tailed critical value $z = 2.5758$ (or prob of awrt 0.002 (<0.005) or 0.004 (<0.01))	B1	
	[2.828 > 2.5758 so] significant evidence to reject H_0	dM1	
	There is evidence of a difference in policy awareness between full time and part time staff	A1ft	(7)
(d)	Can use mean full time and mean part time	B1	(1)
	~ Normal	B1	(2)
(e)	Have assumed $s^2 = \sigma^2$ or variance of sample = variance of population	B1	(1)
(f)	2.53 < 2.5758, not significant or do not reject H ₀	M1	
	So there is insufficient evidence of a difference in mean awareness	A1ft	(2)
(g)	Training course has closed the gap between full time staff and part time staff's mean awareness of company policy.	B1	(1) 17
(a)	1 st M1 for attempt at labelling full-time and part-time staff. One set of correct numbers 1 st A1 for s.r.s. of 120 full-time and 80 part-time	ers.	17
(c)	1^{st} M1 for attempt at s.e condone one number wrong . NB correct s.e. = $\sqrt{\frac{1}{2}}$		
	2^{nd} M1 for using their s.e. in correct formula for test statistic. Must be $\frac{\pm (52-50)}{\sqrt{\frac{p}{q}+\frac{r}{s}}}$		
	3 rd dM1 dep. on 2nd M1 for a correct statement based on their normal cv and their tes 2 nd A1 for correct comment in context. Must mention "scores" or "policy awareness of "staff". Award A0 for a one-tailed comment. Allow ft		
(d)	1^{st} B1 for mention of mean(s) <u>or</u> use of \overline{X} , provided \overline{X} clearly refers to full-time 2^{nd} B1 for stating that distribution can be assumed normal e.g. "mean score of the test is normally distributed" gets B1B1	or part-tii	me
(f)	M1 for correct statement (may be implied by correct contextualised comment) A1 for correct contextualised comment. Accept "no difference in mean scores".	Allow ft	
(g)	B1 for correct comment in context that implies training was effective. This must be supported by their (c) and (f). Condone one-tailed comment he	ere.	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@inneydirect.com

Order Code UA024774 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH